火星居住計画NASAとESAによるインフレータブル居住地の挑戦

宇宙

How will we live elsewhere in the galaxy? On Earth, natural resources for creating structures are abundant, but sending these materials up with us to the Moon or Mars is clunky and cost-prohibitive. Enter architect Xavier De Kestelier, who has a radical plan to use robots and space dust to 3D print our interplanetary homes. Learn more about the emerging field of space architecture with this fascinating talk about the (potentially) not-too-distant future.

別の銀河でどのように生活するのでしょうか?

地球では、建造物を作るための自然資源は豊富ですが、これらの材料を月や火星に持ち込むことは非効率的でコストがかかります。そこで登場するのが、建築家ザビエル・デ・ケステリエールです。彼はロボットと宇宙の塵を使って、私たちの星間の家を3Dプリントする革新的な計画を持っています。この興味深いトークで、宇宙建築の新しい分野について詳しく学んでみましょう。

タイトル Adventures of an interplanetary architect
惑星間建築家の冒険
スピーカー ザビエル・デ・ケステリエール
アップロード 2018/01/12
スポンサーリンク

「惑星間建築家の冒険(Adventures of an interplanetary architect)」の文字起こし

I must have been about 12 years old
when my dad took me to an exhibition on space,
not far from here, in Brussels.
And the year was about — I think it was 1988,
so it was the end of the Cold War.
There was a bit of an upmanship going on between the Americans and the Russians
bringing bits to that exhibition.
NASA brought a big blow-up space shuttle,
but the Russians, they brought a Mir space station.
It was actually the training module,
and you could go inside and check it all out.
It was the real thing —
where the buttons were, where the wires were,
where the astronauts were eating, where they were working.

And when I came home,
the first thing I did, I started drawing spaceships.
Now, these weren’t science fiction spaceships, no.
They were actually technical drawings.
They were cutaway sections
of what kind of structure would be made out of,
where the wires were, where the screws were.
So fortunately, I didn’t become a space engineer,
but I did become an architect.

These are some of the projects that I’ve been involved with
over the last decade and a half.
All these projects are quite different, quite different shapes,
and it is because they are built for different environments.
They have different constraints.
And I think design becomes really interesting
when you get really harsh constraints.

Now, these projects have been all over the world.
A few years ago, this map wasn’t good enough.
It was too small.
We had to add this one,
because we were going to do a project on the Moon
for the European Space Agency;
they asked us to design a Moon habitat —
and one on Mars with NASA,
a competition to look at a habitation on Mars.

Whenever you go to another place,
as an architect
and try to design something,
you look at the local architecture, the precedents that are there.
Now, on the Moon, it’s kind of difficult, of course,
because there’s only this.
There’s only the Apollo missions.
So last that we went there, I wasn’t even born yet,
and we only spent about three days there.
So for me, that’s kind of a long camping trip, isn’t it,
but a rather expensive one.

Now, the tricky thing,
when you’re going to build on another planet or a moon,
is how to get it there, how to get it there.
So first of all,
to get a kilogram, for example, to the Moon’s surface,
it will cost about 200,000 dollars,
very expensive.
So you want to keep it very light.
Second, space. Space is limited. Right?
This is the Ariane 5 rocket.
The space you have there
is about four and a half meters by seven meters, not that much.
So it needs to be an architectural system
that is both compact, or compactable, and light,
and I think I’ve got one right here.

It’s very compact,
and it’s very light.
And actually,
this is one I made earlier.
Now, there’s one problem with it,
that inflatables
are quite fragile.
They need to be protected,
specifically, when you go to a very harsh environment like the Moon.

Look at it like this.
The temperature difference on a Moon base
could be anything up to 200 degrees.
On one side of the base, it could be 100 degrees Celsius
and on the other side, it could be minus 100 degrees.
We need to protect ourselves from that.
The Moon also does not have any magnetic fields,
which means that any radiation — solar radiation, cosmic radiation —
will hit the surface.
We need to protect ourselves from that as well,
protect the astronauts from that.
And then third,
but definitely not last,
the Moon does not have any atmosphere,
which means any meteorites coming into it will not get burned up,
and they’ll hit the surface.
That’s why the Moon is full of craters.
Again, we need to protect the astronauts from that.

So what kind of structure do we need?
Well, the best thing is really a cave,
because a cave has a lot of mass, and we need mass.
We need mass to protect ourselves from the temperatures,
from the radiation
and from the meteorites.
So this is how we solved it.
We have indeed the blue part, as you can see.
That’s an inflatable for our Moon base.
It gives a lot of living space and a lot of lab space,
and attached to it you have a cylinder,
and that has all the support structures in,
all the life support and also the airlock.
And on top of that, we have a structure, that domed structure,
that protects ourselves,
has a lot of mass in it.

Where are we going to get this material from?
Are we going to bring concrete and cement from Earth to the Moon?
Well, of course not, because it’s way too heavy.
It’s too expensive.
So we’re going to go and use local materials.
Now, local materials are something we deal with on Earth as well.
Wherever we build or whatever country we build in,
we always look at, what are the local materials here?
The problem with the Moon is, what are the local materials?
Well, there’s not that many.
Actually, we have one.
It’s moondust,
or, fancier scientific name, regolith, Moon regolith.
Great thing is, it’s everywhere, right?
The surface is covered with it.
It’s about 20 centimeters up to a few meters everywhere.
But how are we going to build with it?
Well, we’re going to use a 3D printer.

Whenever I ask any of you what a 3D printer is,
you’re probably all thinking, well, probably something about this size
and it would print things that are about this size.
So of course I’m not going to bring a massive 3D printer to the Moon
to print my Moon base.
I’m going to use a much smaller device, something like this one here.
So this is a small device, a small robot rover,
that has a little scoop,
and it brings the regolith to the dome
and then it lays down a thin layer of regolith,
and then you would have the robot that will solidify it,
layer by layer,
until it creates, after a few months,
the full base.

You might have noticed
that it’s quite a particular structure that we’re printing,
and I’ve got a little example here.
What we call this is a closed-cell foam structure.
Looks quite natural.
The reason why we’re using this
as part of that shell structure
is that we only need to solidify certain parts,
which means we have to bring less binder from Earth,
and it becomes much lighter.

Now —
that approach of designing something
and then covering it with a protective dome
we also did for our Mars project.

You can see it here, three domes.
And you see the printers printing these dome structures.
There’s a big difference between Mars and the Moon,
and let me explain it.
This diagram shows you to scale
the size of Earth and the Moon and the real distance,
about 400,000 kilometers.
If we then go to Mars,
the distance from Mars to Earth —
and this picture here
is taken by the rover on Mars, Curiosity, looking back at Earth.
You kind of see the little speckle there, that’s Earth, 400 million kilometers away.
The problem with that distance
is that it’s a thousand times the distance of the Earth to the Moon, pretty far away,
but there’s no direct radio contact with, for example, the Curiosity rover.
So I cannot teleoperate it from Earth.
I can’t say, “Oh, Mars rover, go left,”
because that signal would take 20 minutes to get to Mars.
Then the rover might go left,
and then it will take another 20 minutes before it can tell me,
“Oh yeah, I went left.”
So the distance,
so rovers and robots
and going to have to work autonomously.
The only issue with it
is that missions to Mars are highly risky.
We’ve only seen it a few weeks ago.
So what if half the mission doesn’t arrive at Mars.
What do we do?

Well, instead of building just one or two rovers
like we did on the Moon,
we’re going to build hundreds of them.
And it’s a bit like a termite’s mound, you know?
Termites, I would take half of the colony of the termites away,
they would still be able to build the mound.
It might take a little bit longer.
Same here.
If half of our rovers or robots don’t arrive,
well, it will take a bit longer, but you will still be able to do it.
So here we even have three different rovers.
In the back, you see the digger.
It’s really good at digging regolith.
Then we have the transporter,
great at taking regolith and bringing it to the structure.
And the last ones, the little ones with the little legs,
they don’t need to move a lot.
What they do is they go and sit on a layer of regolith
and then microwave it together,
and layer by layer create that dome structure.

Now —
we also want to try that out,
so we went out on a road trip,
and we created our own swarm of robots.
There you go.
So we built 10 of those. It’s a small swarm.
And we took six tons of sand,
and we tried out how these little robots
would actually be able to move sand around,
Earth sand in this case.
And they were not teleoperated. Right?
Nobody was telling them go left, go right, or giving them a predescribed path.
No. They were given a task:
move sand from this area to that area.
And if they came across an obstacle, like a rock,
they had to sort it out themselves.
Or they came across another robot,
they had to be able to make decisions.
Or even if half of them fell out, their batteries died,
they still had to be able to finish that task.

Now, I’ve talked about redundancy.
But that was not only with the robots.
It was also with the habitats.
On the Mars project, we decided to do three domes,
because if one didn’t arrive,
the other two could still form a base,
and that was mainly because each of the domes
actually have a life support system built in the floor,
so they can work independently.

So in a way, you might think, well, this is pretty crazy.
Why would you, as an architect, get involved in space?
Because it’s such a technical field.
Well, I’m actually really convinced
that from a creative view or a design view,
you are able to solve really hard and really constrained problems.
And I really feel that there is a place for design and architecture
in projects like interplanetary habitation.
Thank you.

「惑星間建築家の冒険(Adventures of an interplanetary architect)」の和訳

私は約12歳の時に、父がブリュッセルで開催された宇宙展に連れて行ってくれました。1988年頃で、冷戦の終わり頃でした。アメリカとロシアの間で、展示物の競争がありました。NASAは大きな膨張式スペースシャトルを持ち込みましたが、ロシアはミール宇宙ステーションを持ってきました。それは実際の訓練モジュールで、中に入って見学することができました。ボタンやワイヤー、宇宙飛行士が食事をし作業をしていた場所を見ることができました。

家に帰ると、まず最初に宇宙船の絵を描き始めました。それは科学フィクションの宇宙船ではなく、技術的な図面でした。構造がどうなっているのか、ワイヤーやネジの位置などを詳細に描きました。幸いにも私は宇宙技術者にはなりませんでしたが、建築家にはなりました。

これが私が過去15年間に関わったプロジェクトの一部です。これらのプロジェクトはすべて異なっており、異なる形をしています。それは異なる環境のために設計されているからです。設計は厳しい制約があるときに本当に面白くなると思います。

これらのプロジェクトは世界中で行われました。数年前、この地図は小さすぎて役に立ちませんでした。月でのプロジェクトのために新しい地図が必要でした。ヨーロッパ宇宙機関の依頼で月の居住地を設計し、NASAと共に火星の居住地を設計する競争に参加しました。

別の場所で設計をする際には、その地元の建築を調査します。しかし、月ではアポロ計画のミッションしかありません。最後に月に行ったときは、私はまだ生まれていませんでした。私たちは月でわずか3日間しか過ごしていません。私にとってそれは非常に高価なキャンプ旅行のようなものです。

他の惑星や月に建設する際の難しさは、そこにどうやって物を運ぶかです。例えば、1キログラムを月面に運ぶには約20万ドルかかります。非常に高価です。そのため、軽量でコンパクトな建築システムが必要です。ここにその一例があります。

この構造は非常にコンパクトで軽量です。しかし、インフレータブル(膨張式)の欠点は非常に壊れやすいことです。特に月のような過酷な環境では保護が必要です。

月面基地の温度差は最大200度にもなります。基地の一方では100度、他方ではマイナス100度になることがあります。これを防ぐための保護が必要です。また、月には磁場がないため、放射線が直接降り注ぎます。これからも身を守る必要があります。そして最後に、月には大気がないため、隕石が表面に直撃します。これも防ぐ必要があります。

最適な構造は洞窟のようなものです。洞窟は大量の質量を持ち、温度や放射線、隕石から保護するために必要です。私たちの設計では、膨張式の部分が居住空間と実験室を提供し、シリンダー部分が生命維持装置とエアロックを含みます。そして、その上に大量の質量を持つドーム状の構造が覆います。

この材料をどこから手に入れるか?地球からコンクリートやセメントを持ち込むわけにはいきません。重すぎて高価です。そこで現地の材料を使用します。月の表面には「レゴリス」と呼ばれる月の塵が広がっています。これを3Dプリンターで使用します。

月面基地の設計と保護ドームをカバーするアプローチは、火星プロジェクトでも同様に使用されました。火星と月の大きな違いは距離です。火星は地球から4000万キロメートル離れています。これは月の1000倍の距離です。このため、火星探査機は自律的に作業する必要があります。

火星プロジェクトでは、1台のローバーではなく、数百台のローバーを使用します。これはシロアリのコロニーのようなもので、半分のローバーが失われても作業を続けることができます。

私たちは実際にこれを試しました。小さなロボットの群れを作り、砂を移動させる実験を行いました。ロボットは自律的に障害物を避け、他のロボットと協力して作業しました。

火星プロジェクトでは3つのドームを設計し、1つが到着しなくても残りの2つで基地を形成できるようにしました。それぞれのドームには生命維持システムが内蔵されており、独立して機能することができます。

なぜ建築家が宇宙に関わるのか?それは非常に技術的な分野だからです。しかし、創造的な視点やデザインの観点から、非常に厳しい問題を解決することができると確信しています。デザインと建築には、惑星間の居住プロジェクトにおいて重要な役割があります。ありがとうございました。

タイトルとURLをコピーしました